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Abstract

Large Language Models (LLMs) have demon-
strated remarkable performance across various
tasks. However, they are prone to hallucination,
generating information that is either unsubstan-
tiated or contradictory to the given context. Al-
though many studies have investigated hallu-
cinations in LLMs, addressing hallucinations
in long-context inputs remains an open prob-
lem. In this work, we take an initial step toward
solving this problem by constructing a dataset
specifically designed for long-context halluci-
nation detection. Furthermore, we propose a
novel architecture that enables pre-trained en-
coder models, such as BERT, to process long
contexts and effectively detect contextual hallu-
cinations through a decomposition and aggrega-
tion mechanism. Our experimental results show
that the proposed architecture significantly out-
performs previous models of similar size and
performs on par with LLM-based models while
providing substantially faster inference.

1 Introduction

Large language models (LLMs) have demonstrated
potential in generative and knowledge-intensive
tasks, such as question-answering (QA) and sum-
marization. Despite these advancements, their
practical deployment presents notable challenges,
particularly due to the issue of "hallucination,"
wherein models generate content that appears plau-
sible but is factually incorrect or nonsensical.
Previous research has studied hallucination de-
tection mainly through the lens of Natural Lan-
guage Inference (NLI): given a pair of input texts
context and response, a generated response is con-
sidered faithful and free of hallucinations only
when it is logically entailed by the context (Maynez
et al., 2020; Kryscinski et al., 2020; Fabbri et al.,
2021; Zha et al., 2023). Some studies explore hallu-
cination detection by training small, encoder mod-
els like BERT (Devlin et al., 2019) or RoBERTa

(Liu et al., 2019) on NLI datasets (Kryscinski et al.,
2020; Zha et al., 2023); some other studies take a
LLM-based approach and prompt LLMs to assess
whether hallucinations are present (Chang et al.,
2024; Hu et al., 2024). However, both lines of
work encounter challenges when addressing longer
contexts. For instance, BERT-based models for
hallucination detection are constrained by a maxi-
mum input length of 512 tokens, while LLM-based
prompting for evaluating the faithfulness of re-
sponses to long contexts is not only expensive but
also empirically suboptimal (Kim et al., 2024).

In this work, we introduce a novel architecture
that enables pre-trained encoder models, such as
BERT, to process long contexts and effectively de-
tect contextual hallucinations through a decompo-
sition and aggregation mechanism. Our model be-
gins by decomposing the long input contexts and re-
sponses into smaller chunks. It then generates deep
representations for each chunk using a backbone
encoder model. Finally, it aggregates these chunk-
level representations through a learned attention
and pooling layer to create a holistic representation
of both the context and response chunks to evalu-
ate hallucination. Due to the scarcity of available
datasets in long-context hallucination detection, we
develop a prompting workflow that introduces hal-
lucinations into an existing long document summa-
rization dataset, BookSum (Krysciniski et al., 2022),
to empirically evaluate our proposed architecture.
Our experimental results demonstrate that the pro-
posed architecture significantly outperforms prior
models of similar size and achieves performance
comparable to LLM-based models while offering
substantially faster inference.

2 Problem Definition

In this work, we investigate the problem of long-
context hallucination detection. Our objective is to
develop a model that can effectively and efficiently



detect hallucinations given a pair of input texts: a
context and a corresponding response. Specifically,
we focus on cases where the context is long-form,
which presents additional challenges for models in
terms of processing and making inferences within
a short time frame.

We define the hallucinations under study as fol-
lows: given a document, a response is considered
to contain hallucinations if and only if (a) it in-
troduces unsubstantiated information that is not
grounded in the context, or (b) it presents informa-
tion that contradicts the context. The models are
expected to perform a binary classification to de-
termine whether the response hallucinates relative
to the context, regardless of the specific type of
hallucination.

To empirically evaluate our models within this
problem setting, we conduct experiments on the
task of long-document summarization, where the
context consists of a long document about a book
and the response is a corresponding summary.
However, we posit that our hallucination injection
framework and model design can also generalize to
other domains involving long-context hallucination
detection such as dialogue systems.

3 Dataset Collection

We consider the task of book summarization to sup-
port our experiments and construct our dataset from
BookSum (Kryscinski et al., 2022). This dataset in-
cludes varying levels of document-summary pairs,
including book-level, chapter-level, and paragraph-
level pairs. In our study, we focus on chapter-
level document-summary pairs, as they align more
closely with our research interests. Chapter-level
documents have on average 5,101 tokens, and sum-
maries have on average 505 tokens. The dataset
only provides expert written, ground-truth sum-
maries for the different levels of documents. We
synthesize a hallucinatory subset by injecting some
hallucination for certain pairs in the dataset. To cre-
ate a balanced dataset, we introduce hallucinations
with a 50% probability while iterating through the
dataset. Each time we introduce a hallucination,
we randomly select one type of hallucination from
the two categories introduced in Section 3.1. The
statistics of our dataset is shown in Table 1

3.1 Hallucination Injection

We develop a prompting workflow that supports
us to introduce hallucination to our dataset of long

Split  # of Examples % of hallucinations
Train 5,653 51%
Dev 854 48%
Test 950 52%

Table 1: The statistics of our constructed dataset.

document summarization. We consider two follow-
ing types of hallucination as introduced in Section
2. The exact prompts we use for this process are
shown in Appendix C.

Baseless Information Hallucination We prompt
GPT-40 to "add a complete sentence that is related
to the topic but introduces some new information
you make up ...".

Contradictory Information Hallucination We
prompt GPT-40 to "rewrite one sentence com-
pletely so that it utterly contradicts from its original
sentence ...".

3.2 Dataset Verification

To assess the quality of the annotations, we ran-
domly sample 20 examples from our dataset and
evaluate whether hallucinations are present in the
summaries. We then compare our annotations with
those in the generated dataset, resulting in a Co-
hen’s kappa agreement of 0.9, indicating a high
level of alignment between our generated data and
human judgments.

We also employ Perplexity score as an estimate
to automatically measure the coherence and flu-
ency of the summary after our introduction of hal-
lucination. Perplexity is defined as the exponenti-
ated average negative log-likelihood of a sequence
and is popularly used as a measure to evaluate the
performance of a language model as well as the
quality of generations. It quantifies how well a
probabilistic model predicts a sequence of words.
A lower perplexity score indicates that the lan-
guage model assesses the sequence of text as be-
ing more aligned with its predicted probabilities,
reflecting better coherence and fluency. We calcu-
late the perplexity score of a summary as follows:
Perplexity = exp (—% fil log P(wi)).

We utilize Llama-3.2-1B to compute the average
perplexity scores for both the original summaries
and the summaries after the introduction of halluci-
nation. Interestingly, we observe that the average
perplexity score decreases from 18.52 to 18.26 af-
ter the injection of hallucinations, indicating a high
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Figure 1: The structure of our proposed architecture. In
the attention layer, we add a new token of [CLS] at the
beginning of all chunk-level CLS representations to be
used as a pooled representation for the whole input, and
a [SEP] between the context chunk representations and
the response chunk representations to distinguish them.

quality of our data augmentation process.

4 Our Method

The primary obstacle preventing BERT-based mod-
els from effectively processing long documents is
the computation of the full quadratic attention ma-
trix, which incurs O(n?) time and memory com-
plexity, where n represents the input sequence
length. Intuitively, each token must attend to all
other tokens to develop robust representations of
the input texts. To tackle this challenge, we pro-
pose an architecture that employs a decomposi-
tion and aggregation strategy. The structure of our
model is shown in Figure 1. Given a pair of input
texts—context and response—we first decompose
them into fixed length chunks for both the con-
text and response. Each chunk is then processed
through a pre-trained BERT encoder to obtain their
corresponding CLS representations. Subsequently,
we employ an attention layer to learn which chunks
are most prominent for assessing the presence of
hallucinations in the response with respect to the
context. Finally, we utilize a pooling layer to ob-
tain a holistic representation of all chunks for the
purpose of classification. We provide further exper-
imental details regarding chunk sizes, the number
of chunks, and various other hyperparameters and
architectural design choices in Section 5 and Ap-
pendix A.

Our proposed architecture offers several advan-
tages: 1. Our framework does not necessitate any

further pretraining and can be implemented on top
of existing encoder models. In contrast, previous
approaches for long-context processing, such as Hi-
erarchical Attention Transformer (HAT) (Chalkidis
et al., 2022) or Longformer (Beltagy et al., 2020)
require pretraining on long-form texts, which can
be computationally expensive. Our model circum-
vents this requirement, enabling the use of any en-
coder model as the backbone for fine-tuning on
domain-specific tasks, such as long-context hallu-
cination detection. 2. Theoretically, our model
can accommodate very long contexts by continu-
ally adding layers of decomposition and aggrega-
tion (one layer can process up to 512 chunks x512
chunk size of tokens). Given a fixed chunk length
c (e.g. 512), the computation complexity of our
model is O(k?), where k denotes the number of
chunks and k£ = 7. This represents a significant
improvement over the O(n?) complexity of BERT.

S Experiment

We conduct experiments using our constructed
dataset and compare the performance of our pro-
posed model with that of previous approaches.

5.1 Models

Longformer Longformer is a modified Trans-
former architecture with a self-attention operation
that scales linearly with the sequence length, mak-
ing it versatile for processing long documents (Belt-
agy et al., 2020). We finetune a pre-trained Long-
former model using our dataset for model compari-
son.

Hierarchical Attention Transformer (HAT) Hi-
erarchical Attention Transformers (HATSs) em-
ploy a multilevel attention mechanism consists of
segment-wise attention followed by cross-segment
attention to effectively handle long documents
(Chalkidis et al., 2022). We finetune a pre-trained
HAT model using our dataset for our experiments.

Alignscore Alignscore is a RoBERTa model
trained on a general function that assesses the in-
formation alignment between two arbitrary text
pieces. Its training incorporates a wide range of
data sources, resulting in 4.7 million training ex-
amples derived from seven well-established tasks:
Natural Language Inference (NLI), Question An-
swering (QA), paraphrasing, fact verification, in-
formation retrieval, semantic similarity, and sum-
marization. (Zha et al., 2023). The model can infer
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Figure 2: ROC AUC Results

with arbitrarily long texts; however, it cannot be
trained on texts longer than 512 tokens. The au-
thors also present it as an off-the-shelf metric, given
that it has been trained on a substantial amount of
factual consistency data. Therefore, we evaluate
the model off-the-shelf without any additional train-
ing in this study.

RefChecker RefChecker introduces claim-
triplets to represent claims in LLM responses,
aiming to detect fine-grained hallucinations (Hu
et al., 2024). This framework first prompts an
LLM to extract claims from the response, and then
prompt an LLM another time to compare each of
the claim to the context to predict hallucination.
We use GPT-40-mini as the LLM backbone for
both the extractor and checker in their framework.

GPT-40 We zero-shot prompt GPT-40-mini with
specific instructions and definitions of our task to
predict hallucinations as a strong baseline. The
exact prompt that we use is shown in Appendix C.

Our Model The structure of our model is de-
scribed in Section 4. More experimental details
about our model are discussed in Appendix A.

5.2 Results

We present the Receiver Operating Characteristic
(ROC) Curve and the ROC Area Under the Curve
(AUC) score in Figure 2. Due to the black-box
nature of LLM-based models, we are unable to
obtain their predicted scores, so only the results
from encoder models are displayed. We see that all
baseline models lack discriminative ability in terms
of detecting hallucination with long context: state-
of-the-art metrics in factual consistency evaluation
like AlignScore fail to adapt to long-form texts;

Model PRECISION RECALL LATENCY
HAT 48.42 70.55 41.01
Longformer 47.89 87.47 18.15
Alignscore 50.09 60.00 1.44
Refchecker 52.13 51.21 0.15
GPT-40 53.11 78.68 0.79
Our Model 54.50 73.19 18.62

Table 2: Results of all of the models we tested. Latency
is computed as the number of samples processed per
second at inference time, the higher the faster. The
bolded numbers represent the best performance across
all models and the underlined numbers represent the
second best. See more details about hyperparameter
choices as well as how latency is computed in Appendix
A.

Longformer and HAT also exhibit insufficient ex-
pressive capacity to distinguish hallucinations, de-
spite being pre-trained on long-form texts and then
finetuned on the same training set as our model utill
converged. In contrast, our model demonstrates
strong performance on this task, without any pre-
training on long-form or factual consistency data.

We show the precision, recall score and infer-
ence latency of our model and all baseline models
in Table 2. Notably, Longformer exhibits high re-
call but low precision, indicating that it tends to
overpredict the positive class, leading to a high
number of false positives. Additionally, while Re-
fchecker takes considerably more time for infer-
ence by extracting and verifying individual claims,
it performs worse than GPT-40, despite using the
same backbone LLM. This suggests that traditional
approaches to hallucination detection, which rely
on splitting inputs into claims and verifying each
claim to produce an aggregated score, may not
be as effective when applied to long-context in-
puts. This observation aligns with the suboptimal
performance of AlignScore on our dataset, as its
approach mirrors this method. Our model, on the
other hand, matches GPT-40 in precision and recall
but achieves 20x faster inference times, making it
more applicable for real-world deployment. More
details of how we measure the inference latency
are discussed in Appendix A.

6 Conclusion

We construct a dataset and propose a new architec-
ture to study long context hallucination detection.
We will release our code and data for further re-
search.



Limitations One limitation of our work is that
our proposed model requires in-domain training for
a specific domain. This is different from prompting
with LLMs. However, our proposed prompting
workflow of hallucination injection makes it easy to
obtain high-quality training data for other domains
(e.g. dialogue) as well to support the training of
our model in these areas, and then our model will
have faster inference time in deployment with on
par performance with strong LLMs.
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A Experiment Details

A.1 Training Details

We train our model with the Huggingface Trans-
formers and Accelerate package. We use Ama-
zon Elastic Compute Cloud (Amazon EC2) for our
training experiments. We use one p4d.24xlarge
instance for the training. It has 8 NVIDIA A100
GPUs with 40.0 GB GPU memory each. The op-
timal hyperparamters we find for our model is 40
chunks in total, 32 for context and 8 for response,
each with a chunk size of 256. We train our model
with 2e-6 learning rate, 0.1 weight decay, 1000
warm up steps, and 100 epochs. We train with only
the first 1,000 examples for our model as it already
shows good performance in the validation set. We
use pre-trained Roberta-large as our backbone en-
coder model and a randomly initialized Roberta
Attention layer. All parameters in the architecture
are being optimized. In the attention layer, we add
a new token of [CLS] at the beginning of all chunk-
level CLS representations to be used as a pooled
representation for the whole input, and a [SEP] be-
tween the context chunk representations and the
response chunk representations to distinguish them.

A.2 Inference Latency

HAT, Longformer, and our model inference with 8
GPUs (data parallel) with a batch size of 4. How-
ever, the codebase provided by the authors of Align-
score doesn’t support multi-gpu inference with
longer texts and also doesn’t support batching. So
the inference latency of AlignScore is computed as
their inference time with one gpu and batch size of
one multiplied by 32 as an estimate. Inference time
of GPT-40 and Refchecker depends on API calls to
OpenAl and may differ from time to time due to
network, API availability, and some other reasons.
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B Dataset Examples

The whole chapter is too long to present, so here
we show examples of original summary from the
BookSum dataset, as well as summary after our
hallucination injection. We highlight the specific
sentence that was rewritten or added in different
colors.

Original Summary Any state—old, new,
whatever—needs good laws and good armed forces.
Since you can’t have good armed forces without
good law, let’s just say you need a good army.
There are four types of armies you could have:
a local army, mercenaries, auxiliaries , or some
kind of mixture. First things first: mercenaries
and auxiliary armies are useless. Just don’t do
it. Mercenaries are only interested in the money
and are not reliable. That’s how Italy got into
trouble—occupation by France and Spain—in the
first place. Plus, if a mercenary leader is good
then you have to be afraid that he will turn against
you, and if he is bad he will make you lose
anyway. So, no good. Good armies? Citizen
armies. Look at Rome. Look at Sparta! Carthage
used mercenaries, and guess what happened to
them? They got owned by Philip of Macedonia,
Alexander the Great’s dad. Don’t be like Carthage.
Machiavelli gives us a bunch of examples, but the
basic takeaway here is mercenaries = bad. They
are lazy. They are expensive. They kill during
wartime. And they don’t even defend their camps.
Machiavelli has a little bit of an axe to grind about
this problem, since he has wanted Italy to stop
relying on mercenaries forever, but no one would
listen to him.

Summary After Injection of Contradictory In-
formation Any state—old, new, whatever—needs
good laws and good armed forces. Since you can’t
have good armed forces without good law, let’s just
say you need a good army. There are four types
of armies you could have: a local army, merce-
naries, auxiliaries, or some kind of mixture. First
things first: mercenaries and auxiliary armies are
essential. Always rely on them. Mercenaries are
only interested in the money and are not reliable.
That’s how Italy got into trouble—occupation by
France and Spain—in the first place. Plus, if a mer-
cenary leader is good then you have to be afraid
that he will turn against you, and if he is bad he
will make you lose anyway. So, no good. Good
armies? Citizen armies. Look at Rome. Look at

Sparta! Carthage used mercenaries, and guess what
happened to them? They got owned by Philip of
Macedonia, Alexander the Great’s dad. Don’t be
like Carthage. Machiavelli gives us a bunch of ex-
amples, but the basic takeaway here is mercenaries
= bad. They are lazy. They are expensive. They
kill during wartime. And they don’t even defend
their camps. Machiavelli has a little bit of an axe
to grind about this problem, since he has wanted
Italy to stop relying on mercenaries forever, but no
one would listen to him.

Original Summary Chapter X is entitled "How
to Measure the Strength of Any Prince’s State.
Here Machiavelli adopts a decidedly militaristic
tone. Princes, he writes, are better off when they
can assemble an army and stand up against attack-
ers; once again, Cesare Borgia is cited as a perfect
example. Machiavelli addresses the majority of
this chapter to the other class of princes: "those
who can’t take the field against their foes, but have
to hide behind their walls and defend themselves
there. What should these more vulnerable princes
do. They should keep their cities well-fortified;
they should ignore the rural areas and focus their de-
fense efforts on the urban centers; and they should
be careful not to earn the people’s hatred. A pru-
dent prince is able to keep his subjects loyal to him
and in good spirits during a siege. The burden dur-
ing a siege is often on the besieger; he can almost
never afford to wage a siege and do nothing else for
a year. Defense, therefore, can consist of slowing
the attacker down, wearing him out. Machiavelli
cites the cities in Germany as examples of good for-
tification. These cities have moats, walls, artillery,
public warehouses of food, drink, and fuel, and
large supplies of raw materials in reserve to keep
workers busy and economies going during a siege

Summary After Injection of Baseless New Infor-
mation Chapter X is entitled "How to Measure
the Strength of Any Prince’s State." Here Machi-
avelli adopts a decidedly militaristic tone. Princes,
he writes, are better off when they can assemble
an army and stand up against attackers; once again,
Cesare Borgia is cited as a perfect example. Machi-
avelli addresses the majority of this chapter to the
other class of princes: "those who can’t take the
field against their foes, but have to hide behind
their walls and defend themselves there." What
should these more vulnerable princes do? They
should keep their cities well-fortified; they should
ignore the rural areas and focus their defense efforts



on the urban centers; and they should be careful
not to earn the people’s hatred. He notes that a
well-designed urban area can serve as a formidable
defense mechanism, with strategically placed for-
tifications and supply depots. A prudent prince is
able to keep his subjects loyal to him and in good
spirits during a siege. The burden during a siege
is often on the besieger; he can almost never af-
ford to wage a siege and do nothing else for a year.
Defense, therefore, can consist of slowing the at-
tacker down, wearing him out. Machiavelli cites
the cities in Germany as examples of good forti-
fication. These cities have moats, walls, artillery,
public warehouses of food, drink, and fuel, and
large supplies of raw materials in reserve to keep
workers busy and economies going during a siege.

C GPT-40 Prompts

Prompts Used to Introduce Baseless Informa-
tion Hallucination "Add a complete sentence
that is related to the topic but introduces some new
information you make up. You can add the sen-
tence anywhere in the paragraph but make sure it is
a complete sentence and the paragraph is coherent.
Reply with the whole paragraph that includes the
sentence you added."

Prompts Used to Introduce Contradictory In-
formation Hallucination "Given the paragraph,
rewrite one sentence completely so that it utterly
contradicts from its original sentence. You can
choose any sentence in the paragraph but make
sure the paragraph is still coherent and now has a
claim that contradicts the original paragraph. Reply
with the whole paragraph after the change."

Prompts Used to Run GPT-40-mini Experiments
"You will be given a document and a summary.
Your task is to determine whether the summary is
faithful or unfaithful to the information provided in
the document. If the summary contains any state-
ments that contradict the information given in the
document, or if it includes information not present
or implied by the document, reply "unfaithful’. Oth-
erwise, reply ’faithful’."
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